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Numerical Results on the Transcendence of Constants 
Involving r, e, and Euler's Constant 

By David H. Bailey 

Abstract. Let x = (X1, X2,... , Xn) be a vector of real numbers. x is said to possess 
an integer relation if there exist integers ai such that aixi + a2x2 + ... + anXn = 0. 
Recently, Ferguson and Forcade discovered practical algorithms [7], [8], [9] which, for 
any n, either find a relation if one exists or else establish bounds within which no relation 
can exist. One obvious application of these algorithms is to determine whether or not 
a given computed real number satisfies any algebraic equation with integer coefficients 
(where the sizes of the coefficients are within some bound). 

The recursive form of the Ferguson-Forcade algorithm has been implemented with 
multiprecision arithmetic on the Cray-2 supercomputer at NASA Ames Research Center. 
The resulting computer program has been used to probe the question of whether or 
not certain constants involving 7r, e, and -y satisfy any simple polynomial equations. 
These computations established that the following constants cannot satisfy any algebraic 
equation of degree eight or less with integer coefficients whose Euclidean norm is 109 or 
less: e/ir, e + 7r, loge 7r, -y, el, y/e, fy/7r, and loge -1. Stronger results were obtained in 
several cases. These computations thus lend credence to the conjecture that each of the 
above mathematical constants is transcendental. 

1. Introduction. The problem of finding integer relations among a set of real 
numbers goes back to Euler, who showed that the Euclidean algorithm, when ap- 
plied to two real numbers, either terminates, yielding an exact relation, or else 
produces an infinite sequence of approximate relations. Hermite asked for gener- 
alizations for n > 2. Jacobi responded with an algorithm that was subsequently 
modified and developed by Perron, Bernstein, and others. Poincare suggested an 
algorithm that was later refined by Brun. In the case where a relation does ex- 
ist, Brun's algorithm has been proven to terminate and produce a relation when 
n = 3. However, none of these algorithms has been proven to work for n > 3, and 
numerous counterexamples have been found. In the case where the entries of a vec- 
tor x have no exact integer relations, some of these algorithms provide a sequence 
of lattice approximations that converges to the line between the origin and x in 
the angular sense, but none produces a sequence that converges to the line in the 
absolute distance sense. 

A breakthrough in this area occurred in 1979 when Ferguson and Forcade [7], [9] 
discovered a recursive algorithm that is guaranteed to find an integer relation for 
any vector x of any length n (if a relation exists). If the vector x does not satisfy an 
exact relation, then this algorithm produces a sequence of lattice approximations 
that converges to the line in the absolute distance sense (not just in the angular 
sense). Further, their algorithm provides a means of establishing firm lower bounds 
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on the size of any possible relation. More recently, Ferguson [8] found nonrecursive 
algorithms that also have these properties, although these nonrecursive algorithms 
are significantly more difficult to state and to implement on a computer. 

These new algorithms have numerous possible applications, including factor- 
ization of polynomials, study of "Gauss sums", analysis of possible relationships 
between the fundamental constants of physics, and the analysis of the cosmolog- 
ical stability of the solar system. The most obvious application, however, is to 
determine whether or not a real number a whose value can be calculated on a 
computer is the root of any algebraic equation with integer coefficients. For this 
application it suffices to apply one of these algorithms to the (n + 1)-long vector 
X = (1, a, a2, ... I, a'). If a relation is found, then these integers are the coefficients 
of a polynomial for which a is a zero. Conversely, if a computation establishes a 
bound within which no relations exist, then a cannot satisfy any algebraic equation 
whose coefficients are within this class. This method thus provides a computational 
technique for grasping the property of a number being algebraic. 

A recursive form of the Ferguson-Forcade algorithm has been implemented by 
the author on the Cray-2 supercomputer operated by the Numerical Aerodynamic 
Simulation System at NASA Ames Research Center. This program employs a 
package of high-performance multi-precision arithmetic routines. It is necessary 
to use multi-precision arithmetic because the Ferguson-Forcade algorithm requires 
an extraordinarily high level of numerical precision to probe for integer relations 
of higher degree. The computer run time requirement is correspondingly high for 
seeking these high-degree relations, but a number of useful computations of this 
sort can be performed on a supercomputer such as the Cray-2. 

The following constants were selected for analysis by the above procedure: e/7r, 
e + 7r, loge 7r, y, e", -y/e, -y/7r, and loge -. Note that 7r, e, and el were not included 
because these are known to be transcendental [3]. There are of course many other 
interesting constants that could have been selected. It is hoped that some of these 
others can be analyzed in the future. 

2. The Ferguson-Forcade Algorithm. The following is a precise statement 
of the particular version of the algorithm that was implemented for these applica- 
tions. A full discussion of the mathematical theory behind this algorithm may be 
found in [9]. Lower-case symbols will be used to denote vectors of real numbers and 
upper-case symbols will be used to denote matrices of real numbers. The norms of 
the vector x and the matrix A are defined as the Euclidean norms: 

lZI = / X? JAI = a ?t3 

i ~~~i,j 

The transpose of the row vector x and the matrix A will be denoted by xt and At, 
respectively. Finally, In will be used to denote an identity matrix of size n x n. 

Let x denote an n-long input vector of real numbers. To initialize the calculation, 
set P =xxtI -xtx. In other words, Pij =-xixj, if i $ j, and Pjj = j x. Now 
set x' = x, P' = P, and A = In. Then perform the procedure ALG(n, x', P', A), 
which is defined below. 

If ALG(n, x', P', A) terminates, then the original row vector x, when multiplied 
on the right by the inverse of the current A matrix, should yield one entry that is 
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within a reasonable tolerance of machine zero. The column of A1 that produced 
this zero is then the desired relation. If ALG(n, x', P', A) completes but does not 
terminate, then any possible integer relation r must satisfy Irl > Ix12/IAPI, where 
x and P are the initial arrays and A is the current A matrix. This fact is proved in 
[9]. At this point, the process may be continued by performing ALG(n, x', P', A) 
again and repeating until either a legitimate relation is discovered or else precision 
is exhausted. One can tell that precision has been exhausted if the algorithm 
terminates with a matrix A, but no entry of xA-1 is sufficiently close to machine 
zero. 

The function of the procedure ALG(n, x, P, A) will now be described. 
ALG(1,x,P,A): If x = 0 then terminate; otherwise set P = 0 and A = 1 and 

exit. 
ALG(n, x, P, A) for n > 2: If some entry of x is zero (or within a reasonable 

tolerance of machine zero), then terminate. Otherwise, perform the following steps: 
1. Find a row of P with the smallest norm. Exchange this row with the last row 

of P, and also exchange the corresponding rows of A and entries of x. 
2. Construct the (n - 1) x (n - 1) matrix Q = uutIni - utu, where the vector 

U = (x1/xn,x2/xn,...,xInI/xn). Set u' = u, Q' = Q, and B = In-,. Then 
perform ALG(n - 1, u', Q', B). If it terminates, then set c = 0. Otherwise repeat 
it until the condition 

IBQWI < U121 VI 

is satisfied. Here, W denotes the (n - 1) x n matrix consisting of all rows of P 
except the last, and v is the last row of P. When the condition is satisfied, set c to 
the integer vector closest to But/lu12. 

3. Set 

=[~ ?1] 
and replace x by xC-0, P by CP, and A by CA. 

Actually, it is not necessary ever to invert the matrices A and C. The author's 
program carries both A and A-1 through all steps of the above procedure. For 
initialization, both A and A1 are set to the identity. In the first step above, the 
columns of A-1 are exchanged instead of the rows. In the third step, the matrix 
B1 and the negative of c are used to construct C-1, and finally A1 is replaced 
by A-IC-'. 

There is something of a numerical difficulty in being able to clearly recognize 
a zero entry in the first step above. The author found that it was satisfactory 
to examine the entries for either being within twelve orders of magnitude of the 
"machine epsilon" (i.e., 10-6w, where w is the number of words of precision used), 
or else being twenty orders of magnitude smaller than the other nonzero entries. 
It is necessary to allow this last condition because repeated constructions of the 
u-vector from the x-vector in the second step above can renormalize these numbers 
far above machine epsilon. 

3. Multi-Precision Techniques. Unfortunately, a very high level of numerical 
precision is required to perform the Ferguson-Forcade algorithm for values of n 
higher than three. In fact, the calculations reported here employed either 6,144 
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or 12,288 digit precision. For this purpose, a package of high-performance multi- 
precision arithmetic routines was employed. These routines are similar to the ones 
previously used by the author in a high-precision computation of ir [1]. Several 
improvements have been made in these routines since that computation, and these 
differences will be summarized here. 

The main difference between these computations and those described in [1] is that 
an ordinary complex fast Fourier transform (FFT) is used here for multiplication 
instead of dual prime modulus transforms. Although the complex FFT technique 
fails, due to numerical difficulties, for very high precision (millions of digits), it runs 
approximately five times faster than the prime modulus technique on the Cray-2 
and thus is preferable for this application. Another difference is that the radix 
of the multi-precision number representation is 106 instead of 107 as in [1]. This 
allows data to be split into two words containing three digits each upon entry to 
the FFT multiply routine. 

The FFT routine used in this program is currently the fastest software available 
to perform a one-dimensional FFT on the Cray-2. Details of this FFT algorithm 
may be found in [2]. Multi-precision multiplication is performed using this FFT as 
follows. Let x = (xo,XI... Xn-) and y = (Yo,Yi,. .. ,Yn-1) denote the radix-b 
representations of two multi-precision numbers. Extend x and y to length N = 2n 
by appending n zeros to each. Then the product z of x and y (except for releasing 
carrys) is merely the convolution 

N-1 

Zk = Ck(X,Y) =E XjYk-j, 
j=O 

where the subscript k - j is to be interpreted as k - j + N if negative. This 
convolution is not evaluated directly, but as 

C(x, y) = F- [F(x)F(y)] 

where F and F1 denote the discrete Fourier transform and its inverse: 
N-i 1 N-1 

Fk(X) = i xje-2rijk/N Fk 1(x) =- E xje2rijk/N 

j=O j=O 

Since the input data x and y and the output data z are all purely real, a technique 
described in [6] is used to reduce both the forward and reverse transforms to complex 
transforms of one lower order, which dramatically reduces run time. 

Multi-precision division and square root extraction are performed using forms of 
Newton's iteration that require only multiplications, and thus they piggyback off 
of the multiply procedure described above. 

It should be noted that it is not necessary to perform all operations of the 
Ferguson-Forcade algorithm using high precision. For instance, the computation of 
matrix norms can always be done in single precision, although the author found it 
necessary to manually maintain the exponent, since otherwise even the very high 
dynamic range of the Cray floating-point format (102,466)_ occasionally overflows. 
Also, in the early stages of the algorithm, the A matrix in particular contains inte- 
gers of only modest size, and a simple "schoolboy" multiplication procedure suffices 
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for operations involving these numbers. The author's multi-precision multiply rou- 
tine thus checks the number of nonzero words of precision in the arguments and 
performs the FFT multiply algorithm only if the actual precision of both arguments 
is above a certain level. 

4. Algorithms for Computing the Constants. The constant ir was com- 
puted using Borweins' quartically convergent algorithm, which was discovered in 
1985 [5]. This algorithm is as follows: Let ao = 6 - 4-"2 and yo = - 1. Iterate 

Yk+1 = k 

ak+1 = ak(1 + Yk+1) -22k+3Yk+l(1 + Yk+1 + Yk+) 

Then ak converges quartically to 1/r: Each successive iteration approximately 
quadruples the number of correct digits in the result. 

Euler's constant -y was calculated using the following formulas, which are an 
improvement of a technique previously used by Sweeney [10]: 

2n ?? 2nm m 1 

log 2=lg2+ 

k=1 (2k - 

Unfortunately, this procedure exhibits only linear convergence. No quadratically 
convergent algorithm is yet known for -y. Nonetheless, it is feasible to compute -Y to 
the precision required for these calculations without expending too much computer 
time. 

Exponentials and logarithms (and e itself) were computed using quadratically 
convergent algorithms, which are also due to the Borweins [4]. The algorithm for 
computing et is as follows. 

First we need to define the functions P(s) and Q(s). To define P(s), set xo = s, 
IsI < 1, and yo = 16/(1 -s2). Then iterate the following until convergence: 

2Xk Xk + 1 
Xk+1 = 2 Yk+1 = Yk ( 2 1J 

The extraction of 2kth roots in the last line is performed using Newton's iteration 
with a level of precision that doubles at each step. P(s) is then defined as the 
limiting value of Yk. To define Q(s), set ao = 1, bo = s, a' = 1, and bo = - 

Then iterate the following until convergence: 

ak+1 = ak + bk 
bk+1 = a a/ k k bl a 

2 ' k,k ak+1= 2 b'k+1 
ikY 

Q(s) is defined as the ratio of the limits of a and a'. With P(s) and Q(s) defined, 
the exponential function of t may be evaluated by using Newton iterations (with 
a variable level of precision as before) to solve the equation Q(s) = t/ir for s, and 
then evaluating P(s). As a starting value for these Newton iterations, the author 
has found that a single precision calculation of the following is satisfactory: 

J 0.0287621/P when p < 2.5, 

so= 1 - e208-p when 2.5< p ? 30, 

1 100 .434(2-p) when p > 30, 
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where p = t/ir. The natural logarithm of z can be obtained by using Newton 
iterations to solve P(s) = z for s, and then evaluating xrQ(s). 

5. Numerical Results. Computer programs employing the above algorithms, 
including the multi-precision routines, have been implemented in the ANSI Fortran- 
77 language. The Fortran compiler on the Cray-2 was able to automatically vec- 
torize almost all loops in these codes. In the few cases where loops are vectorizable 
but not automatically vectorized by the compiler, vectorization was forced with 
directives. As a result, these programs run at nearly 100 million floating-point op- 
erations per second on one processor of the four-processor Cray-2. No attempt was 
made to utilize more than one processor. Most of the eight runs required on the 
order of two hours of processing time. Normally it would have been very difficult 
to obtain this much computer time for such an application. However, in early 1987, 
the Cray-2 and auxiliary equipment were moved to a new building, and before full 
production usage resumed, some extra time became available. 

The results of these calculations are listed in Table 1. The precision figures 
listed are the number of decimal digits of precision used. The bounds listed are the 
minimum Euclidean norm of the coefficients of any possible degree-eight polynomial 
that the given constant could be a zero of. 

TABLE 1 

Lower'bounds for the Euclidean norms of degree-eight polynomials 

Constant Precision Bound 
e/Ix 12,288 6.1030 x 10'4 

e+ir 12,288 2.2753 x 1018 
logir 6,144 8.7697 x 1009 

1 6,144 3.5739x 1009 
e^/ 12,288 1.6176 x 1017 
'y/e 6,144 1.8440 x 1011 

-Y/'K 6,144 6.5403 x 1009 

log-Y 6,144 2.6881 x 19"? 
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