
MATHEMATICS OF COMPUTATION
VOLUME 50, NUMBER 181
JANUARY 1988, PAGES 275-281

Numerical Results on the Transcendence of Constants
Involving r, e, and Euler's Constant

By David H. Bailey

Abstract. Let x = (X1, X2,... , Xn) be a vector of real numbers. x is said to possess
an integer relation if there exist integers ai such that aixi + a2x2 + ... + anXn = 0.
Recently, Ferguson and Forcade discovered practical algorithms [7], [8], [9] which, for
any n, either find a relation if one exists or else establish bounds within which no relation
can exist. One obvious application of these algorithms is to determine whether or not
a given computed real number satisfies any algebraic equation with integer coefficients
(where the sizes of the coefficients are within some bound).

The recursive form of the Ferguson-Forcade algorithm has been implemented with
multiprecision arithmetic on the Cray-2 supercomputer at NASA Ames Research Center.
The resulting computer program has been used to probe the question of whether or
not certain constants involving 7r, e, and -y satisfy any simple polynomial equations.
These computations established that the following constants cannot satisfy any algebraic
equation of degree eight or less with integer coefficients whose Euclidean norm is 109 or
less: e/ir, e + 7r, loge 7r, -y, el, y/e, fy/7r, and loge -1. Stronger results were obtained in
several cases. These computations thus lend credence to the conjecture that each of the
above mathematical constants is transcendental.

1. Introduction. The problem of finding integer relations among a set of real
numbers goes back to Euler, who showed that the Euclidean algorithm, when ap-
plied to two real numbers, either terminates, yielding an exact relation, or else
produces an infinite sequence of approximate relations. Hermite asked for gener-
alizations for n > 2. Jacobi responded with an algorithm that was subsequently
modified and developed by Perron, Bernstein, and others. Poincare suggested an
algorithm that was later refined by Brun. In the case where a relation does ex-
ist, Brun's algorithm has been proven to terminate and produce a relation when
n = 3. However, none of these algorithms has been proven to work for n > 3, and
numerous counterexamples have been found. In the case where the entries of a vec-
tor x have no exact integer relations, some of these algorithms provide a sequence
of lattice approximations that converges to the line between the origin and x in
the angular sense, but none produces a sequence that converges to the line in the
absolute distance sense.

A breakthrough in this area occurred in 1979 when Ferguson and Forcade [7], [9]
discovered a recursive algorithm that is guaranteed to find an integer relation for
any vector x of any length n (if a relation exists). If the vector x does not satisfy an
exact relation, then this algorithm produces a sequence of lattice approximations
that converges to the line in the absolute distance sense (not just in the angular
sense). Further, their algorithm provides a means of establishing firm lower bounds

Received March 2, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 11-04, 11Y60, 1J82.

?1988 American Mathematical Society
0025-5718/88 $1.00 + $.25 per page

275

276 DAVID H. BAILEY

on the size of any possible relation. More recently, Ferguson [8] found nonrecursive
algorithms that also have these properties, although these nonrecursive algorithms
are significantly more difficult to state and to implement on a computer.

These new algorithms have numerous possible applications, including factor-
ization of polynomials, study of "Gauss sums", analysis of possible relationships
between the fundamental constants of physics, and the analysis of the cosmolog-
ical stability of the solar system. The most obvious application, however, is to
determine whether or not a real number a whose value can be calculated on a
computer is the root of any algebraic equation with integer coefficients. For this
application it suffices to apply one of these algorithms to the (n + 1)-long vector
X = (1, a, a2, ... I, a'). If a relation is found, then these integers are the coefficients
of a polynomial for which a is a zero. Conversely, if a computation establishes a
bound within which no relations exist, then a cannot satisfy any algebraic equation
whose coefficients are within this class. This method thus provides a computational
technique for grasping the property of a number being algebraic.

A recursive form of the Ferguson-Forcade algorithm has been implemented by
the author on the Cray-2 supercomputer operated by the Numerical Aerodynamic
Simulation System at NASA Ames Research Center. This program employs a
package of high-performance multi-precision arithmetic routines. It is necessary
to use multi-precision arithmetic because the Ferguson-Forcade algorithm requires
an extraordinarily high level of numerical precision to probe for integer relations
of higher degree. The computer run time requirement is correspondingly high for
seeking these high-degree relations, but a number of useful computations of this
sort can be performed on a supercomputer such as the Cray-2.

The following constants were selected for analysis by the above procedure: e/7r,
e + 7r, loge 7r, y, e", -y/e, -y/7r, and loge -. Note that 7r, e, and el were not included
because these are known to be transcendental [3]. There are of course many other
interesting constants that could have been selected. It is hoped that some of these
others can be analyzed in the future.

2. The Ferguson-Forcade Algorithm. The following is a precise statement
of the particular version of the algorithm that was implemented for these applica-
tions. A full discussion of the mathematical theory behind this algorithm may be
found in [9]. Lower-case symbols will be used to denote vectors of real numbers and
upper-case symbols will be used to denote matrices of real numbers. The norms of
the vector x and the matrix A are defined as the Euclidean norms:

lZI = / X? JAI = a ?t3

i ~~~i,j

The transpose of the row vector x and the matrix A will be denoted by xt and At,
respectively. Finally, In will be used to denote an identity matrix of size n x n.

Let x denote an n-long input vector of real numbers. To initialize the calculation,
set P =xxtI -xtx. In other words, Pij =-xixj, if i $ j, and Pjj = j x. Now
set x' = x, P' = P, and A = In. Then perform the procedure ALG(n, x', P', A),
which is defined below.

If ALG(n, x', P', A) terminates, then the original row vector x, when multiplied
on the right by the inverse of the current A matrix, should yield one entry that is

TRANSCENDENCE OF CONSTANTS INVOLVING 7r, e, AND EULER'S CONSTANT 277

within a reasonable tolerance of machine zero. The column of A1 that produced
this zero is then the desired relation. If ALG(n, x', P', A) completes but does not
terminate, then any possible integer relation r must satisfy Irl > Ix12/IAPI, where
x and P are the initial arrays and A is the current A matrix. This fact is proved in
[9]. At this point, the process may be continued by performing ALG(n, x', P', A)
again and repeating until either a legitimate relation is discovered or else precision
is exhausted. One can tell that precision has been exhausted if the algorithm
terminates with a matrix A, but no entry of xA-1 is sufficiently close to machine
zero.

The function of the procedure ALG(n, x, P, A) will now be described.
ALG(1,x,P,A): If x = 0 then terminate; otherwise set P = 0 and A = 1 and

exit.
ALG(n, x, P, A) for n > 2: If some entry of x is zero (or within a reasonable

tolerance of machine zero), then terminate. Otherwise, perform the following steps:
1. Find a row of P with the smallest norm. Exchange this row with the last row

of P, and also exchange the corresponding rows of A and entries of x.
2. Construct the (n - 1) x (n - 1) matrix Q = uutIni - utu, where the vector

U = (x1/xn,x2/xn,...,xInI/xn). Set u' = u, Q' = Q, and B = In-,. Then
perform ALG(n - 1, u', Q', B). If it terminates, then set c = 0. Otherwise repeat
it until the condition

IBQWI < U121 VI

is satisfied. Here, W denotes the (n - 1) x n matrix consisting of all rows of P
except the last, and v is the last row of P. When the condition is satisfied, set c to
the integer vector closest to But/lu12.

3. Set

=[~ ?1]
and replace x by xC-0, P by CP, and A by CA.

Actually, it is not necessary ever to invert the matrices A and C. The author's
program carries both A and A-1 through all steps of the above procedure. For
initialization, both A and A1 are set to the identity. In the first step above, the
columns of A-1 are exchanged instead of the rows. In the third step, the matrix
B1 and the negative of c are used to construct C-1, and finally A1 is replaced
by A-IC-'.

There is something of a numerical difficulty in being able to clearly recognize
a zero entry in the first step above. The author found that it was satisfactory
to examine the entries for either being within twelve orders of magnitude of the
"machine epsilon" (i.e., 10-6w, where w is the number of words of precision used),
or else being twenty orders of magnitude smaller than the other nonzero entries.
It is necessary to allow this last condition because repeated constructions of the
u-vector from the x-vector in the second step above can renormalize these numbers
far above machine epsilon.

3. Multi-Precision Techniques. Unfortunately, a very high level of numerical
precision is required to perform the Ferguson-Forcade algorithm for values of n
higher than three. In fact, the calculations reported here employed either 6,144

278 DAVID H. BAILEY

or 12,288 digit precision. For this purpose, a package of high-performance multi-
precision arithmetic routines was employed. These routines are similar to the ones
previously used by the author in a high-precision computation of ir [1]. Several
improvements have been made in these routines since that computation, and these
differences will be summarized here.

The main difference between these computations and those described in [1] is that
an ordinary complex fast Fourier transform (FFT) is used here for multiplication
instead of dual prime modulus transforms. Although the complex FFT technique
fails, due to numerical difficulties, for very high precision (millions of digits), it runs
approximately five times faster than the prime modulus technique on the Cray-2
and thus is preferable for this application. Another difference is that the radix
of the multi-precision number representation is 106 instead of 107 as in [1]. This
allows data to be split into two words containing three digits each upon entry to
the FFT multiply routine.

The FFT routine used in this program is currently the fastest software available
to perform a one-dimensional FFT on the Cray-2. Details of this FFT algorithm
may be found in [2]. Multi-precision multiplication is performed using this FFT as
follows. Let x = (xo,XI... Xn-) and y = (Yo,Yi,. .. ,Yn-1) denote the radix-b
representations of two multi-precision numbers. Extend x and y to length N = 2n
by appending n zeros to each. Then the product z of x and y (except for releasing
carrys) is merely the convolution

N-1

Zk = Ck(X,Y) =E XjYk-j,
j=O

where the subscript k - j is to be interpreted as k - j + N if negative. This
convolution is not evaluated directly, but as

C(x, y) = F- [F(x)F(y)]

where F and F1 denote the discrete Fourier transform and its inverse:
N-i 1 N-1

Fk(X) = i xje-2rijk/N Fk 1(x) =- E xje2rijk/N

j=O j=O

Since the input data x and y and the output data z are all purely real, a technique
described in [6] is used to reduce both the forward and reverse transforms to complex
transforms of one lower order, which dramatically reduces run time.

Multi-precision division and square root extraction are performed using forms of
Newton's iteration that require only multiplications, and thus they piggyback off
of the multiply procedure described above.

It should be noted that it is not necessary to perform all operations of the
Ferguson-Forcade algorithm using high precision. For instance, the computation of
matrix norms can always be done in single precision, although the author found it
necessary to manually maintain the exponent, since otherwise even the very high
dynamic range of the Cray floating-point format (102,466)_ occasionally overflows.
Also, in the early stages of the algorithm, the A matrix in particular contains inte-
gers of only modest size, and a simple "schoolboy" multiplication procedure suffices

TRANSCENDENCE OF CONSTANTS INVOLVING r, e, AND EULER'S CONSTANT 279

for operations involving these numbers. The author's multi-precision multiply rou-
tine thus checks the number of nonzero words of precision in the arguments and
performs the FFT multiply algorithm only if the actual precision of both arguments
is above a certain level.

4. Algorithms for Computing the Constants. The constant ir was com-
puted using Borweins' quartically convergent algorithm, which was discovered in
1985 [5]. This algorithm is as follows: Let ao = 6 - 4-"2 and yo = - 1. Iterate

Yk+1 = k

ak+1 = ak(1 + Yk+1) -22k+3Yk+l(1 + Yk+1 + Yk+)

Then ak converges quartically to 1/r: Each successive iteration approximately
quadruples the number of correct digits in the result.

Euler's constant -y was calculated using the following formulas, which are an
improvement of a technique previously used by Sweeney [10]:

2n ?? 2nm m 1

log 2=lg2+

k=1 (2k -

Unfortunately, this procedure exhibits only linear convergence. No quadratically
convergent algorithm is yet known for -y. Nonetheless, it is feasible to compute -Y to
the precision required for these calculations without expending too much computer
time.

Exponentials and logarithms (and e itself) were computed using quadratically
convergent algorithms, which are also due to the Borweins [4]. The algorithm for
computing et is as follows.

First we need to define the functions P(s) and Q(s). To define P(s), set xo = s,
IsI < 1, and yo = 16/(1 -s2). Then iterate the following until convergence:

2Xk Xk + 1
Xk+1 = 2 Yk+1 = Yk (2 1J

The extraction of 2kth roots in the last line is performed using Newton's iteration
with a level of precision that doubles at each step. P(s) is then defined as the
limiting value of Yk. To define Q(s), set ao = 1, bo = s, a' = 1, and bo = -

Then iterate the following until convergence:

ak+1 = ak + bk
bk+1 = a a/ k k bl a

2 ' k,k ak+1= 2 b'k+1
ikY

Q(s) is defined as the ratio of the limits of a and a'. With P(s) and Q(s) defined,
the exponential function of t may be evaluated by using Newton iterations (with
a variable level of precision as before) to solve the equation Q(s) = t/ir for s, and
then evaluating P(s). As a starting value for these Newton iterations, the author
has found that a single precision calculation of the following is satisfactory:

J 0.0287621/P when p < 2.5,

so= 1 - e208-p when 2.5< p ? 30,

1 100 .434(2-p) when p > 30,

280 DAVID H. BAILEY

where p = t/ir. The natural logarithm of z can be obtained by using Newton
iterations to solve P(s) = z for s, and then evaluating xrQ(s).

5. Numerical Results. Computer programs employing the above algorithms,
including the multi-precision routines, have been implemented in the ANSI Fortran-
77 language. The Fortran compiler on the Cray-2 was able to automatically vec-
torize almost all loops in these codes. In the few cases where loops are vectorizable
but not automatically vectorized by the compiler, vectorization was forced with
directives. As a result, these programs run at nearly 100 million floating-point op-
erations per second on one processor of the four-processor Cray-2. No attempt was
made to utilize more than one processor. Most of the eight runs required on the
order of two hours of processing time. Normally it would have been very difficult
to obtain this much computer time for such an application. However, in early 1987,
the Cray-2 and auxiliary equipment were moved to a new building, and before full
production usage resumed, some extra time became available.

The results of these calculations are listed in Table 1. The precision figures
listed are the number of decimal digits of precision used. The bounds listed are the
minimum Euclidean norm of the coefficients of any possible degree-eight polynomial
that the given constant could be a zero of.

TABLE 1

Lower'bounds for the Euclidean norms of degree-eight polynomials

Constant Precision Bound
e/Ix 12,288 6.1030 x 10'4

e+ir 12,288 2.2753 x 1018
logir 6,144 8.7697 x 1009

1 6,144 3.5739x 1009
e^/ 12,288 1.6176 x 1017
'y/e 6,144 1.8440 x 1011

-Y/'K 6,144 6.5403 x 1009

log-Y 6,144 2.6881 x 19"?

Acknowledgment. The author wishes to acknowledge the patient assistance of
Professor Helaman Ferguson in suggesting this work and in explicating the details
of his algorithm.

NAS Systems Division
NASA Ames Research Center
Mail Stop 258-5
Moffett Field, California 94035

1. D. H. BAILEY, "The computation of 7r to 29,360,000 decimal digits using Borweins' quarti-
cally convergent algorithm," Math. Comp., v. 50, 1988, pp. 283-296.

2. D. H. BAILEY, "A high performance fast Fourier transform algorithm for the Cray-2," J.
Supercomputing, v. 1, 1987, pp. 43-60.

3. A. BAKER, Transcendental Number Theory, Cambridge Univ. Press, London, 1975.
4. J. M. BORWEIN & P. B. BORWEIN, "The arithmetic-geometric mean and fast computation

of elementary functions," SIAM Rev., v. 26, 1984, pp. 351-365.

TRANSCENDENCE OF CONSTANTS INVOLVING ,7r e, AND EULER'S CONSTANT 281

5. J. M. BORWEIN & P. B. BORWEIN, Pi and the AGM-A Study in Analytic Number Theory
and Computational Complexity, Wiley, New York, 1987.

6. E. 0. BRIGHAM, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N. J., 1974.
7. H. R. P. FERGUSON & R. W. FORCADE, "Generalization of the Euclidean algorithm for

real numbers to all dimensions higher than two," Bull. Amer. Math. Soc. (N.S.), v. 1, 1979, pp.
912-914.

8. H. R. P. FERGUSON, "A non-inductive GL(n, Z) algorithm that constructs linear relations
for n Z-linearly dependent real numbers," J. Algorithms, v. 8, 1987, pp. 131-145.

9. H. R. P. FERGUSON, "A short proof of the existence of vector Euclidean algorithms," Proc.
Amer. Math. Soc., v. 97, 1986, pp. 8-10.

10. D. W. SWEENEY, "On the computation of Euler's constant," Math. Comp., v. 17, 1963, pp.
170-178.

